Exploring Nature's Fundamental Forces and Particles with the Large Hadron Collider

Beate Heinemann

University of California, Berkeley and Lawrence Berkeley National Laboratory

Compass Lecture, UC Berkeley , April 2008

The Large Hadron Collider (LHC)

MontBlanc

Circumference: 16.5 miles

Vs214 TeV

Luminosity

- Single most important quantity
 - Drives our ability to detect new processes

$$L= \frac{f_{rev} n_{bunch} N_p^2}{A}$$

revolving frequency: $f_{rev}=11254/s$ #bunches: $n_{bunch}=2835$ #protons / bunch: $N_n=10^{11}$

Area of beams: $A\sim40 \mu m$

Rate of physics processes per unit time directly related:

 $N_{obs} = \int Ldt \cdot \epsilon \cdot \sigma$

Cross section σ : Given by Nature (calc. by theorists)

Efficiency: optimized by experimentalist

Ability to observe something depends on Nobs

Ŀ

What Do We Hope to find at LHC?

- Answers to very fundamental and simple questions:
 - Why do electrons have mass?
 - Possible answer: The Higgs boson
 - Why is gravity so weak?
 - Possible answer: supersymmetric particles
 - Or ultimately
 - · Does a Universe have to be like ours?
 - · Or, is it random that ours is as it is?
- NB: This planet (and we!) would not exist if it was otherwise

Higgs Particles interact with other particles the stronger the heavier they are:

- distance ~10⁻¹⁷ cm => will be found at LHC!

9

How the Higgs Field gives Mass

Cocktail party:
Guests are evenly spread

Arrival of celebrity:
Guests cluster near celebrity

D. Miller / UCL

Celebrity looses momentum <=> acquires mass (guests act like Higgs field)

Why is Gravity so weak compared to the other forces?

The "finetuning problem"

- Why is gravity is so much weaker than the weak force?
 - Newton: G_N =6.67 x 10⁻¹¹ m³kg/s² ~10⁻³⁸ GeV⁻²
 - Fermi: $G_F = 1.17 \times 10^{-5} \text{ GeV}^{-2}$

- Or why is the W boson mass so small?
 - Weak scale: $M_W \sim 1/M_{\text{weak}} = 1/\sqrt{G_F} = 3x10^2 \text{ GeV}$
 - Natural scale: M_{Planck}=1/√G_N~10¹⁹ GeV
- ⇒"Finetuning" required to make W and Higgs mass small

13

Finetuning Problem

- Free parameter m²_H^{tree} "finetuned" to cancel huge corrections so that
 - 200 GeV= 1763409820456210415 GeV- 1763409820456210215 GeV
- Isn't that Crazy!?!
 - Some unknown ad-hoc parameter introduced with superb precision
 - We were very lucky it worked out like this!
 - Like finding a pen on a table like this

Seems wrong somehow

Solving the finetuning problem

- Add new particles
 - New loops cancel old loops!
 - Size of loops naturally the same
 - No hugely tuned ad-hoc parameter needed
- "Supersymmetric" particles
 - Each standard model particle has a partner, e.g.:
 - Electron => Selectron
 - Quark => Squark
 - Photon => Photino
 - W boson => Wino

Already happened in History!

- Might also seem crazy to have another set of particles introduced to solve aesthetic problem
- Analogy in electromagnetism:
 - Free electron has Coulomb field:

$$\Delta E_{\text{Coulomb}} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_e}.$$

- Mass receives corrections due to Coulomb field:
 - $(m_e c^2)_{obs} = (m_e c^2)_{bare} + \Delta E_{\text{Coulomb}}.$
 - With $r_e < 10^{-17}$ cm: 0.000511 = (-3.141082 + 3.141593) GeV.
- Solution: the positron!

$$\Delta E = \Delta E_{\text{Coulomb}} + \Delta E_{\text{pair}} = \frac{3\alpha}{4\pi} m_e c^2 \log \frac{\hbar}{m_e c r_e}$$
.

Hitoshi Murayama, UC Berkeley

Problem was not as bad as today's but it resulted in new particle species: anti-particles

More virtues of Supersymmetry (SUSY)

ρ' 60

50

1/0,

- Electromagnetic, strong and weak force unify!
 - Miss unification in SM (barely)
 - Exactly unify in SUSY!
- Includes candidate for dark matter with 0.1-1 TeV mass
 - Cosmology data point to such a particle
 - 5 times more than ordinary matter

30 20 1/0, $1/\alpha_3$ 15 10 log Q 15 10 log Q oark Energy Dark Matter 28

2 60

50 40 $1/\alpha_1$

1/α,

SUSY

If SUSY particles are the solution to finetuning problem they will be found at the LHC

Silicon Tracking Detectors

- · Charged particle traverses silicon sensor (semi-conductor)
 - Sets free charge carriers
 - Drift to electrodes
 - · Measured charge gets collected at electrodes
 - Thus we find out position of particle
 - Resolution typically 15 μm
- Detector placed inside magnetic field:
 - Lorentz force: F_L ~ q v x B
- · Hits along trajectory are fit to form a track
 - deviation from straight line proportional to momentum (p~v)
 - Direction of curvature tells us the electric charge

- Cylinder: L=1.4 m , R=12.25 cm
- 80,000,000 individual pixels arranged in modules:
 - 16 chips per module, 2880 pixels per chip => 46080 pixels/module
 - Distance between pixels: 50 μm ("pitch")
- Designed and built largely in the United States

2000 Physicists from all over the World

(including 400 PhD students)
+ many technician and engineers

31

Enormous Data Volumes

- Pushing the computing limits!
 - 1 second of LHC data: 1000 GigaBytes
 - 10,000 sets of the Encyclopedia Britannica
 - 1 year of of LHC data: 10,000,000 GB
 - 25 km tower of CD's (~2 x earth diameter)
 - 10 years of LHC data:
 - All the words spoken by humankind since its appearance on earth
- Solution: the "Grid"
 - Global distribution of CPU power
 - More than 100 CPU farms worldwide share computing power

Some Example Analyses

Finding the Higgs boson:

- -with photons
- -with **Z-bosons**

Finding a Supersymmetric World

Particles

33

Rates of Processes

• Everything happens probabilistically

Process	Rate
any	600 million / sec
W→ev	10 / sec
Top quark	1 / sec
SUSY	<1 / min
Н→γγ	8 / day

- And competing "background processes" that can be large
 - Key experimental work is to suppress/reduce and understand them

Finding the Higgs Boson (with photons) Higgs →γγ • Find 2 high energy g. 400 photons - If M(H)<130 GeV/c² Separate signal from Events/500 MeV for 100 fb-1 backgrounds - Backgrounds can look exactly the background same q 4000 – but for γ 's from Higgs: 20 130 130 m_{γγ}(GeV) **Μ**(γγ) $M(H)=M(\gamma\gamma)=\sqrt{[(E_1+E_2)^2-(p_1+p_2)^2]}$ $\overline{\mathsf{q}}$

Finding the Higgs Boson (with Z's) simulated event Find 4 high energy Ź muons or electrons - If M(H)>130 GeV/c² Separate signal from backgrounds - Again calculating the **Higgs signal** invariant mass Backgrounds much = 150 GeV/s 30 fb⁻¹ smaller than in diphoton case: Easier! **Background** M(eeee)

Conclusions

- The LHC will finally probe the "TeV scale" (r = 10⁻¹⁷ cm)
 - Known to be special since 1934
- After a 15 year design and construction phase the LHC experiments are taking data!
 - Cosmic muons now, pp collisions later this year
- · Biggest experiments ever built
 - >2000 physicists per experiment work towards a common goal
- LHC will definitely answer some (and hopefully many) fundamental questions
 - Within the next 2-5 years we'll know a lot more

43

Further Information

- CERN: http://public.web.cern.ch
- Particle Physics: http://particleadventure.org
- Experiments:
 - ATLAS: http://www.atlas.ch
 - CMS: http://cmsinfo.cern.ch/outreach/

(including many movies)